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Abstract—In this paper, with the latest advancements in electronics, several techniques are used for removal of unwanted entities from signals especially 
that are implied in the most sophisticated applications. The removal of power line interference from most sensitive medical monitoring equipment’s can 
also be removed by implementing various useful techniques with different error nonlinearity-based adaptive filters, which are computationally superior 
having multiplier free weight update loops are used for cancellation of noise in electrocardiographic (ECG) signals. The proposed implementation is 
suitable for applications such as biotelemetry, where power line interference (50/60 Hz) is the main source of noise in most of bio-electric signals. These 
schemes mostly employ simple addition, shift operations and achieve considerable speed up over the other least mean square (LMS)-based realizations. 
Simulation studies shows that the proposed realization gives better performance compared to existing realizations. 
 

Index Terms—Adaptive-filtering, Convergence of  lms algorithms, electrocardiographic (ECG), least mean square (LMS) algorithm, power line 

interference, noise cancellation, telecaridiology. 
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1 INTRODUCTION 
IOTELEMETRY is defined as transmitting biological or 
physiological data from a remote location to a location that 
has the capability to interpret the data and affect decision 

making. Biotelemetry is an important method for monitoring 
physiological variables by providing a wireless link between 
the subject and the data collection equipment. Biomedical data 
has been telemetered through every medium between two sites, 
including air, space, water and biologic tissue, by using a 
variety of modulated energy forms like electromagnetic waves, 
light, and ultrasound. One of the applications in biotelemetry is 
wireless Ambulatory ECG system. In such cases, the ECG signal 
is used to know the cardiac condition of an ambulatory patient. 
Wireless Ambulatory ECG recording is now routinely used to 
detect arrhythmias and cardiac abnormalities. As the ECG 
signal contains numerous artifacts, these artifacts have to be 
removed before monitoring, from the receiver point-of-view, so 
that a correct decision can be taken. So, it is necessary to remove 
the different artifacts present in the ECG signal hence there is a 
need of filtering the ECG signal. In a practical case most of the 
signals are non-stationary and the filter, which we use must 
change its coefficient according to the input signal.  
 

    Several filtering techniques has presented in literature for 
ECG analysis, which includes, adaptive and non-adaptive 
techniques [1]–[13], adaptive filtering techniques permit to the 
detect time varying potentials and to track the dynamic 
variations of the signals. In [2], Thak or et al. proposed an least 
mean square (LMS)  based adaptive recurrent filter to acquire 
the impulse response of normal QRS complexes and then 
applied it for arrhythmia detection in ambulatory ECG 

recordings. . The reference inputs to the LMS algorithm are 
deterministic functions and are defined by a periodically 
extended, truncated set of orthonormal basis functions. In such 
a case, the LMS algorithm operates on an instantaneous basis 
such that the weight vector is updated for every new sample 
within the occurrence based on an instantaneous gradient 
estimate. In a study, however, a steady-state convergence 
analysis for the LMS algorithm with deterministic reference 
inputs showed that the steady-state weight vector is biased and 
thus the adaptive estimate does not approach the Wiener 
solution [14]. In [15], Kotas presented an application of 
principal component analysis and its robust form for ECG 
enhancement, Floris et al. elaborates the fast lane approach 
using improved versions of LMS and normalized LMS (NLMS) 
algorithms for the prediction of respiratory motion signals [16], 
subtraction procedure without affecting the components of 
ECG signal [17], Sayadi et al. in [18] proposed bionic wavelet 
trans- form for the correction of baseline drift and Sameni et al. 
in [19] established a framework of Bayesian filtering for ECG 
de- noising. Apart from these ECG enhancement techniques 
several adaptive signal processing techniques are also 
published, e.g., NLMS algorithm with decreasing step size, 
which converge to the global minimum [20], a variable step size 
NLMS algorithm with faster convergence rate [21], Costa et al. 
in [22] proposed a noise resilient variable step size LMS which 
is specially indicated for biomedical applications. Also, several 
modifications are presented in literature to improve the 
performance of the LMS algorithm [23]. Recently, in [24], 
Rahman et al. presented several less computational complex 
adaptive algorithms based on data normalization.  
 
   In recent years, biotelemetry has become more important. In 
[25], Sufi et al. proposed ECG compression algorithms for 
wireless telecardiology. Complexity reduction of the noise 
cancellation system, particularly in     applications such as wire- 
less biotelemetry system has been remained a topic of intense 
research. This is because of the fact that with increase in the 
ECG data transmission rate, the receiver filter’s impulse 
response length increases and thus the order of the filter 
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increases. The resulting increase in complexity makes the real-
time operation of the biotelemetry system difficult, especially in 
view of simultaneous shortening of the symbol period, which 
means that lesser and lesser time will be available to carry out 
the computations, while the volume of the computations goes 
on increasing. Thus far, to the best of the author’s knowledge, 
no effort has been made to reduce the computational 
complexity of the adaptive algorithm without affecting the 
signal quality. The computational complexity can be reduced 
by using the sign based algorithms, namely, the signed 
regressed algorithm, the sign algorithm, and the sign-sign 
algorithm [27], all three require only half as many 
multiplications as in the LMS algorithm, thus making them 
attractive from practical implementation point-of-view. In 
order to cope with both the complexity and convergence issues 
without any restrictive tradeoff, we propose various adaptive 
filter structures based on the error nonlinear signed regressed 
LMS (ENSRLMS) algorithm, the error nonlinear sign LMS 
(ENSLMS) algorithm, and the error nonlinear sign-sign LMS 
(ENSSLMS) algorithm. These algorithms enjoy less 
computational complexity because of the sign present in the 
algorithm and good filtering capability because of the 
normalized term [25], [26]. To study the performance of the 
filter structures which effectively remove the artifacts from  
the ECG signal. The simulation results show that the 
performance of sign-based algorithms is better than the LMS 
counterpart. 

2     COMPUTATIONALLY EFFICIENT ADAPTIVE 

FILTERING TECHNIQUES 

The electrocardiogram (ECG) is a graphical representation of 
hearts functionality and is an important tool used for diagnosis 
of cardiac abnormalities. In the clinical environment during 
acquisition, the ECG signal encounters various types of 
artifacts. The predominant artifact in the ECG includes Power-
Line Interference (PLI). This artifacts strongly affects the ST 
segment, degrades the signal quality, frequency resolution, 
produces large amplitude signals in ECG that can resemble 
PQRST waveforms, and masks tiny features that are important 
for clinical monitoring, diagnosis. Cancellation of these artifacts 
in ECG signals is an important task for better diagnosis. The 
extraction of high-resolution ECG signals from recordings 
which are contaminated with background noise is an important 
issue to investigate. The goal of ECG signal enhancement is to 
separate the valid signal components from the undesired 
artifacts and to present an ECG that facilitates easy, accurate 
interpretation. So, we need to develop efficient adaptive noise 
cancelers. 
   Consider a length , LMS-based adaptive filter, depicted in 
Fig. 1, that takes an input sequence  and updates the 
weights as 
 

𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝒙(𝑛)𝒆(𝑛)                                  (1) 
 

Where 𝒘(𝑛) = [𝑤0(𝑛)𝑤1(𝑛) … . 𝑤𝐿 − 1(n)] ise  the tap weight 

vector at the nth index 𝒙(𝑛) = [𝑥(𝑛)𝑥(𝑛 − 1) … . 𝑥(𝑛 − 𝐿 + 1)]t, 

 
 

Fig. 1. Adaptive filter structure 

 

 

error signal  𝑒(𝑛) = 𝑑(𝑛) − 𝒘𝒕(𝑛)𝒙(𝑛) , with 𝑑(𝑛) being so called 
the desired response available during initial training period, 
and  denoting so-called step-size parameter. 
   In order to remove the noise from the ECG signal, the ECG 
signal 𝑠1(𝑛)corrupted with noise signal 𝑝1(𝑛) is applied as the 
desired response 𝑑(𝑛) to the adaptive filter shown in Fig. 1. If 
the noise signal 𝑝2(𝑛), possibly recorded from another 
generator of noise that is correlated in some way with 𝑝1(𝑛) is 
applied at the input of the filter, i.e., 𝑥(𝑛) = 𝑝2(𝑛) the filter error 
becomes 𝑒(𝑛) = [𝑠1(𝑛) + 𝑝1(𝑛)] − 𝑦(𝑛) , where 𝑦(𝑛) is the filter 
output and it is given by  

 
𝑦(𝑛) = 𝑤𝑡(𝑛)𝑥(𝑛)                                    (2) 

 
Now, the mean-squared error (MSE) becomes 

 
𝐸(𝑒2) = {𝐸{𝑠1(𝑛) − 𝑦(𝑛)]2} + 𝐸[𝑝1

2(𝑛)]                            (3) 
 

Since 𝑠1(𝑛) and 𝑝1(𝑛)  are uncorrelated, similarly 𝑝1(𝑛)  and 
𝑦(𝑛) are uncorrelated and the last two expectations are zero. 
Minimizing the MSE results in a filter output which is the best 
least squares estimated of the signal 𝑠1(𝑛)  [2[,[31].  
    New algorithms that make use of the signum (polarity) of 
either the error or the input signal, or both [27], have been 
derived from the LMS algorithm for the simplicity of 
implementation, enabling a significant reduction in computing 
time, particularly the time required for “multiply and 
accumulate” (MAC) operations. These algorithms are attractive  
for their assured convergence and robustness against the 
disturbances in addition to the ease of implementation. The 
most important members of this class of algorithms are: Signed 
regressed Algorithm (SRA), Sign Algorithm (SA), and Sign-
Sign Algorithm (SSA). The weight update relations for these 
algorithms, respectively, are 
 
                     𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝑠𝑔𝑛{𝑥(𝑛)}{𝑒(𝑛)}                    (4) 

 
                      𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇{𝑥(𝑛)}𝑠𝑔𝑛{𝑒(𝑛)}                  (5) 
 
and 
                    𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝑠𝑔𝑛{𝑥(𝑛)}𝑠𝑔𝑛{𝑒(𝑛)}             (6) 
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Where sgn{ } is the well-known signum function, i.e. 
 

           𝑠𝑔𝑛{𝑒(𝑛)} = {

1: 𝑒(𝑛) > 0

0: 𝑒(𝑛) = 0

−1: 𝑒(𝑛) < 0

 

 
Among the adaptive algorithms presented above, the SRA, SA, 
and SSA has a convergence rate and a steady-state error that are 
slightly inferior to those of the LMS algorithm for the same 
parameter setting because of the sign present in the algorithm, 
i.e., some residual noise present in the signal, but speed up as 
the mean square error drops. However, the computational 
complexity of these algorithms is much less compared to the 
LMS algorithm. 
 
This can be explained as follows. Consider the SA, it may be 
written as 

                            𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇{𝑥(𝑛)} {
𝑒(𝑛)

|𝑒(𝑛)|
}                  (8) 

 
Since 𝑠𝑔𝑛[𝑒(𝑛)] = 𝑒(𝑛)/|𝑒(𝑛)|  : 
This is rearranged as 
 

                           𝑤(𝑛 + 1) = 𝑤(𝑛) + [
𝜇

𝑒(𝑛)
] 𝑥(𝑛)𝑒(𝑛)                 (9) 

 
The above equation reveals that the sign algorithm may be 
thought as an LMS algorithm with a variable step size 

parameter, 𝜇𝑡 = {𝜇/𝑒(𝑛)}. The step size parameter  
increases, on an average, as the sign algorithm converges, since 

 decreases in magnitude. A small  leads to an equally small 

value for  in the initial portion of the sign algorithm. As a 
result the algorithm initially converges slowly. However, as the 

algorithm converges and  becomes smaller in magnitude, 

the step size  becomes larger, leads to a faster convergence. 
Moreover the sign present in the algorithm and setting  to a 
value of power of two, the hardware implementation is highly 
simplified (shift and add/subtract operation only) [27]. 
 
The NLMS algorithm is another class of adaptive algorithm 
used to train the coefficients of adaptive filter. This algorithm 
accounts the variation in signal level at filter output and 
selecting the normalized step size parameter that results in a 
stable as well as a fast converging algorithm. The weight update 
relation for NLMS algorithm is as follows: 
 

            𝑤(𝑛 + 1) = 𝑤(𝑛) + [
𝜇

𝑝+𝑥𝑡(𝑛)𝑥(𝑛)
] 𝑥(𝑛)𝑒(𝑛)                (10) 

 
The variable step can be written as 
 

                              𝜇(𝑛) =
𝜇

𝑝+𝑥𝑡(𝑛)𝑥(𝑛)
                             (11) 

 
Here,  is fixed convergence factor to control maladjustment. 
The parameter  is set to avoid the denominator being too small 
and the step size parameter too big. 

 
Comparing (1) and (10), the update equation of NLMS is a 
scaled version of LMS algorithm. The size of the change to 

weight vector  is therefore to be inversely proportional to 

the norm of data vector  . 

The data vector  with a large norm will generally lead to a 

small change to  than a vector with a smaller norm. This 
normalization results in smaller step size values than the 
conventional LMS. The normalized algorithm usually 
converges faster than the LMS algorithm, since it utilizes a 
variable convergence factor aiming at the minimization of the 
instantaneous output error [29]. Instead of using the 
instantaneous data vector for normalization, the squared norm 
of the error vector can be used. The length of the error vector is 
the instantaneous number of iterations. Because the step size is 
normalized with reference to error, this algorithm is called the 
Error Nonlinear LMS (ENLMS) algorithm. A common major 
drawback of adaptive noise cancelers using LMS-based 
algorithms is the large value of excess mean-square error which 
results in signal distortion in the noise-canceled signal. In the 
ENLMS algorithm, the time-varying step-size is inversely 
proportional to the squared norm of error vector rather than the 
input data vector as in the NLMS algorithm. This algorithm 
provides significant improvements in decreasing mean-
squared error (EMSE) and consequently minimizing signal 
distortion [28], [29]. 
The weight update relation for ENLMS algorithm is as follows: 

            

              𝑤(𝑛 + 1) = 𝑤(𝑛) + [
𝜇

𝑝+𝑒𝑡(𝑛)𝑒(𝑛)
] 𝑥(𝑛)𝑒(𝑛)              (12) 

 
The variable step can be written as      
 

                                  𝜇𝑒(𝑛) =
𝜇

𝑝+𝑒𝑡(𝑛)𝑒(𝑛)
                          (13) 

 
The advantage of the ENLMS algorithm is that the step size can 
be chosen independent of the input signal power and the 
number of tap weights. Hence, the ENLMS algorithm has a 
convergence rate and a steady-state error better than the LMS 
algorithm. On the other hand, some additional computations 
are required to compute . In order to cope up with both the 
complexity and convergence issues without any restrictive 
tradeoff, we propose error normalized sign based algorithms 
such as the error nonlinear signed regressed LMS (ENSRLMS) 
algorithm, the error nonlinear sign LMS (ENSLMS) algorithm, 
and the error nonlinear sign-sign LMS (ENSSLMS) algorithm 
for the removal of noise from ECG signal. The weight update 
relations for these algorithms, respectively, are 
 
               𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝑒(𝑛) + 𝑠𝑔𝑛{𝑥(𝑛)}{𝑒(𝑛)}           (14) 

 
              𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝑒(𝑛){𝑥(𝑛)}𝑠𝑔𝑛{𝑒(𝑛)}                (15) 
and 
 
               𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝑒(𝑛)𝑠𝑔𝑛{𝑥(𝑛)}𝑠𝑔𝑛{𝑒(𝑛)}        (16) 

 

1378

IJSER © 2014 
http://www.ijser.org

JISER



 
Fig. 2(a). Convergence characteristics of LMS algorithms. 

 

 
Fig. 2(c). Convergence characteristics of LMS and ENSRLMS algorithms. 

 

2.1 Computational Complexity Issues 
As the sign-based algorithms are largely free from the MAC 

operations, the proposed schemes provide elegant means to re-

move noise from the ECG signal. Table I provides comparative 

account of different commonly used algorithms and the 

proposed algorithm in terms of number of operations required. 

Among all the algorithms the ENLMS is more complex, it re-

quires  MACs and one division. The conventional LMS 

algorithm requires  MAC operations to implement the 

weight updating (1) on DSP processor. For the SSLMS 

algorithm, to evaluate  from  using (4), only  add 

with sign check (ASC) operations are required. But the rate of 

convergence of this algorithm is very slow. Hence, the SSLMS 

algorithm alone will not be a suitable candidate for the removal 

of noise from the ECG signal. The ENSSLMS algorithm, which 

is the combination of SSLMS and ENLMS is very much suit-able 

as this algorithm requires  shift  ASC operations in case of 

block-based realization or if we choose the value of  as a 

power of 2. From Table I, it is also clear that the number

 
Fig. 2(b). Convergence characteristics of LMS and ENSLMS algorithms 

 
 

 
Fig. 2(d). Convergence characteristics of LMS and ENSSLMS algorithms. 

 
 
utations required for the proposed block-based ENSRLMS is 

independent of filter. 
 

TABLE 1 
A COMPUTATIONAL COMPLEXITY COMPARSION TABLE 

 

Algorithm MACs ASC Divisions Shifts 

LMS L +1 NIL NIL NIL 

SLMS L NIL NIL NIL 

SSLMS NIL L NIL NIL 

SRLMS 1 NIL NIL NIL 

ENSLMS L NIL 1 NIL 

ENSRLMS 1 NIL 1 NIL 

ENSSLMS NIL L 1 NIL 

 

1379

IJSER © 2014 
http://www.ijser.org

JISER



and ENLMS is very much suit-able as this algorithm requires   

shift  ASC operations in case of block-based realization or if 

we choose the value of  as a power of 2. From Table I, it is 

also clear that the number of computations required for the 

proposed block-based ENSRLMS is independent of filter length 

. Note that ASC and shift operations requires less logic 

circuitry when compared with MAC operations. 

 

3   SIMULATION RESULTS 
    To show that error nonlinear signed algorithms are really 

effective in clinical situations, the method has been validated 

using ECG recordings. In our simulation, we used the first 5000 

samples of the ECG signals. For evaluating the performance of 

proposed filter structures, we have measured signal-to-noise 

ratio improvement (SNRI) and compared with the LMS 

algorithm. For all the figures, a number of samples is taken on 

 axis and amplitude on  axis, unless stated. Table II gives the 

comparison of various algorithms in terms of mean square error 

(MSE) and excess mean square error (EMSE). Table III gives the 

contrast of algorithms in terms of SNRI (dBs). Various adaptive 

filter structures are implemented using LMS, ENSRLMS, 

ENSLMS and EN-SSLMS algorithms. 

 

3.1   Noise Generator 

     The reference signal  shown in Fig. 1 is taken from noise 
generator. A synthetic PLI with 1 mv amplitude is simulated for 
PLI cancellation, no harmonics are synthesized. This database 
was recorded at a sampling rate of 50 Hz. The input SNR for the 
above nonstationary noise is taken as 2dB. In the considered 
simplified algorithms because of the sign present in the 
recursion some tiny noise remains along the ST segment of the 
ECG signal. In order to extract the residual noise, a tiny PLI is 
added to the noise reference signal. This improves the 

performance of the filter. 

 
TABLE II 

COMPARISON OF MSE AND EMSE OF VARIOUS 

ALGORITHMS FOR  µ=0.005 

 

Algorithm MSE EMSE 

LMS 0.4405 0.3369 

ENSLMS 0.1123 0.0107 

ENSRLMS 0.1053 0.031 

ENSSLMS 0.1152 0.0132 

 
 
 
 

 
Fig. 3(a) ECG signal 

 

 
Fig. 3(b) ECG signal and its spectrum 

 

 
3.2   Adaptive Power-Line Interference Canceler 
    This experiment demonstrates power-line interference (PLI) 

cancellation. The input to the filter is ECG signal corrupted with 

a synthetic PLI of frequency 50 Hz and sampled at 200 Hz, 

which is generated in the noise generator. The reference signal 

is synthesized PLI, the output of the filter is recovered signal. 

The simulation results are shown in Fig. 4. The frequency 

spectrum before filtering and after filtering using the LMS and 

ENSRLMS algorithms are shown in Fig. 5. The SNR contrast for 

the dataset is shown in Table III. In SNR measurements, it is 

found that ENSRLMS algorithm gets SNRF of 12.0636 dB, 

ENSLMS gets 10.7250 dB, ENSSLMS gets 9.4302 dB, whereas 

the conventional LMS algorithm gets to 10.2215dB. 

 

Fig. 4(a).  ECG Signal with PLI. 
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Fig. 4(b). PLI cancelled filtered signal with LMS algorithm. 

 

 
        Fig. 4(c). PLI cancelled filtered signal with ENSSLMS algorithm. 

 

 
        Fig. 4(d). PLI cancelled filtered signal with ENSRLMS algorithm. 

 

 
 

         Fig. 4(e). PLI cancelled filtered signal with ENSLMS algorithm. 

 

 
Fig. 5(a). Spectrum of ECG with PLI. 

 

 

 
Fig. 5 (b). Spectrum after filtering with LMS algorithm. 

 
 

 
Fig. 5(c) Spectrum after filtering with ENSRLMS algorithm. 

 
 

TABLE III 

PERFORMANCE CONTRAST OF VARIOUS ALGORITHMS 

FOR THE REMOVAL OF PLI   NOISE (ALL VALUES IN (dBs). 

 

Parameter LMS ENSRLMS ENSLMS ENSSLMS 

SNR 0.1305 0.1024 -0.0054 -0.061 

SNR 
FINAL 

10.225 12.063 10.725 9.4302 

FINAL 
ERROR(e) 

0.3258 0.0055 0.0612 0.2104 

4    CONCLUSION 

In this paper, the problem of noise cancellation from ECG 
signal using error normalization based adaptive filters are 
proposed and tested. For this, the input and the desired 
response signals are properly chosen in such a way that the 
filter output is the best least squared estimate of the original 
ECG signal. Among the three algorithms, ENSRLMS performs 
better than the other. From the simulated results, it is clear that 
these algorithms remove the artifacts efficiently present in the 
ECG signal. The proposed treatment provides high SNR with 
less computational complexity. The computational complexity 
in terms of MACs and SNR contrast are shown in Tables I and 
III. Hence, the proposed ENSRLMS, ENSLMS, ENSSLMS-
based adaptive filters are more suitable for health monitoring 
ECG sensors. 
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